







# TEST RESULTS OF KALMATRON®KF-αβγ TAIWAN, ROC



### Research provided by "TONDALEE TRADING" CO., LTD 8F, 219, SEC, 1, TUNG HWA S. ROAD, TAIPEI, TAIWAN TEL.: 886-2-27218069; FAX 886-2-27110235 Tondalee@ms14.hinet.net

#### TEST RESULTS of $KF\alpha\beta\gamma$

"Tondalee Trading Co" (Taiwan) provided the present test procedure for evaluation of KALMATRON  $\otimes$  KF $\alpha\beta\gamma$  radioactive shielding material by coating on the radioactively contaminated rebar of concrete constructions. The samples of product and test instructions provided by Structural Protection Enterprise, Inc. USA.

Test Instrument: "DM 3100" (USA)

Initial data's. Emitter:

Co-60 ( $\gamma$ -ray emitter, Z = 27, T<sub>1/2</sub> = 5.3 years, E<sub> $\gamma$ </sub> =1.17MeV ÷ 1.33 MeV).

Specimens:

- a. Concrete panels 60x60x3 cm with density 2.4 gr/cm<sup>3</sup>;
- b. KF- $\alpha\beta\gamma$  is the mix of Powder with conical filler "F":

CONCLUSIONS:

- 1. KALMATRON® KF- $\alpha\beta\gamma$  is completely compatible with cement containing building materials.
- 2. Application provided by the standard stucco technology by trowel without shrinkage and cracking. Any type of paint is applicable also on the surface of protective coating.
- 3. Effectiveness of KALMATRON® KF- $\alpha\beta\gamma$  layers, coated on the 30 mm concrete slab in compare with 30 mm lead slab is follows:
- 10 mm  $\Rightarrow$  38%
- $15 \text{ mm} \Rightarrow 44\%$
- 20 mm  $\Rightarrow$  47%
- 25 mm  $\Rightarrow$  56%
- 4. Average of  $\Delta_i$  = 6.00%, i.e. every 5 mm layer increase radioactive protection on 6% or on 0.200  $\mu$  Sv/hour.
- 5. According to emitter's data Co 60, the energy of radioactivity will be reduced up to 50% after next five years. Therefore, after 3-5 years the present radiation will be suppressed till 0.2  $\mu$  Sv/hour.
- 6. KALMATRON® KF- $\alpha\beta\gamma$  has met the requirements of Sanitary Control of Radioactive Contamination.

## Research provided by "TONDALEE TRADING" CO., LTD 8F, 219, SEC, 1, TUNG HWA S. ROAD, TAIPEI, TAIWAN TEL.: 886-2-27218069; FAX 886-2-27110235 Tondalee@ms14.hinet.net

#### **30 MM CONCRETE SLABS COATED BY** %% 30 MM μ KALMATRON ® KFaby LAYERS: Sv/hr CONCRETE & 11 ₽ U 1 LEAD SLABS 10MM 15MM 20MM 25MM 3.4 100% 38% Δ=6% 44% ∆=3% 47% C 56% 0 Δ=9% NC 66% 62% 2.1 1 R OMM E 56% 1.9 T 53% 1.8 KF OMM 12.87 6 MM + 30 10mm KF 213 44% 1.5 MM MMM KF ox By aBy Smu L 1.16 34% KF 10 000 E aBy A 15mm D

COMPARATIVE TEST RESULTS OF KALMATRON® KF- $\alpha\beta\gamma$ Test Instrument "DM 3100" (USA); Dose on air 0.16  $\mu$  Sv/hr.

Table 0. The equivalent of absorbed dose of  $\alpha\beta\gamma$  radiation by lead and by concresslabs with and without shielding by KF- $\alpha\beta\gamma$  ( $\mu$  Sv/hour). The powder is used with heavy fillers.

Emitter:

Co-60 ( $\gamma$ -ray emitter, Z = 27, T<sub>1/2</sub> = 5.3 years, E<sub> $\gamma$ </sub> =1.17MeV ÷ 1.33 MeV).



# COMPARISION OF KALMATRON® KF- $\alpha\beta\gamma$ and LEAD with CONCRETE Test Instrument "DM 3100" (USA); Dose on air 0.16 $\mu$ Sv/hr.

Table 1. The equivalents of absorbed dose of  $\alpha\beta\gamma$  radiation by lead and concrete slabs with and without shielding by KF- $\alpha\beta\gamma$  ( $\mu$  Sv/hour).

Emitter: Co-60 ( $\gamma$ -ray emitter, Z = 27, T<sub>1/2</sub> = 5.3 years, E<sub> $\gamma$ </sub> =1.17MeV  $\div$  1.33 MeV). Legend: -High level of absorbed dose of radiation

- Low level of absorbed dose of radiation

\* - Layers were tested at the age of 7 days.

July, 98

#### July, 98



### COMPARISION OF CONCRETE SLABLS WITH AND WITHOUT KALMATRON® KF-aby Test Instrument "DM 3100" (USA); Dose on air 0.16 µ Sv/hr.

Table 2. The equivalents of absorbed dose of aby radiation by concrete slabs with and without shielding by KF- $\alpha\beta\gamma$  ( $\mu$  Sv/hour).

Emitter: Co-60 ( $\gamma$ -ray emitter, Z = 27, T<sub>1/2</sub> = 5.3 years, E<sub> $\gamma$ </sub> =1.17MeV ÷ 1.33 MeV).

Legend:



Comparative percentage.



#### Notice:

∆ - resistance of particular shielding layer

0.7 [µSv/H] - emitted radiation through 30 mm lead slab

| 1.1~1.2           | 1.6~1.7          | 1.26              | 1.72             | 1.36                | 1.97             | 1.8                      | 2.37             | 2.17<br>26%       | 2.92             | 109                |                     |
|-------------------|------------------|-------------------|------------------|---------------------|------------------|--------------------------|------------------|-------------------|------------------|--------------------|---------------------|
| VICTOR            | Anoracia         | Δινοτοάο          | Δινεταιτο        | Average             | Алегаое          | Average                  | Average          | Average           | Average          | Average            | 01.0                |
| Low<br>0.86       | Low<br>1.37      | Low<br>0.99       | Low<br>1.50      | Low<br>1.11         | Low<br>1.63      | Low<br>1.49              | Low<br>2.33      | Low<br>1.78       | Low<br>2.54      | Low<br>105~106     | S<br>S<br>I<br>V    |
|                   |                  |                   |                  |                     |                  |                          |                  |                   |                  |                    | 0.15                |
| High<br>1.34      | High<br>1.80     | High<br>1.52      | High<br>1.94     | High<br>1.60        | High<br>2.30     | High<br>1.90             | High<br>2.41     | High<br>2.55      | High<br>3.30     | High<br>113        |                     |
| 25mm              |                  | 20mm              |                  | 15mm                |                  | 10mm                     |                  | l 5mm             |                  |                    |                     |
| ΚΓαβγ             |                  | ΚΓα β γ           |                  | ΚΓαβγ               |                  | KF $\alpha \beta \gamma$ |                  | Powder            |                  | energy             |                     |
| Concrete<br>30mm+ | Concrete<br>55mm | Concrete<br>30mm+ | Concrete<br>50mm | Concrete :<br>30mm+ | Concrete<br>45mm | Concrete<br>30mm+        | Concrete<br>40mm | Concrete<br>30mm+ | Concrete<br>30mm | Co 60<br>radiation | Background<br>Value |

Test Report of KF-  $\alpha$   $\beta$   $\gamma$  as Radiation Shielding Material

/

破測出期: 7/27/1998

**惊迅入员: 土玉殿** 

檢測單位: 中華民國輻射安全促進會

Test Report of KF-  $\alpha$   $\beta$   $\gamma$  as Radiation Shielding Material

 $\widehat{}$ 

| 8661/6 |                                                                             | Jigh               | MO                                     | Average                          | , |                         |                                                          |                              | High         | Low                    | Average              |
|--------|-----------------------------------------------------------------------------|--------------------|----------------------------------------|----------------------------------|---|-------------------------|----------------------------------------------------------|------------------------------|--------------|------------------------|----------------------|
| 10/29  |                                                                             | 4<br>1             | 3                                      | erage                            |   |                         |                                                          |                              | High         | Low                    | Average              |
| •      | <u>`</u>                                                                    | igh Hi             | ow                                     | verage Av                        |   | $1 \times 30 \text{mm}$ | $\pm 2 \times 30 \text{mm}$<br>& $2 \times 20 \text{mm}$ | αβγ                          | High<br>0.48 | Low<br>0.30            | Average<br>0.31~0.32 |
|        | Lead<br>30mm                                                                | High H<br>1.27     | Low<br>0.85                            | Average A<br>1.16                |   | $1 \times 30 \text{mm}$ | $+2 \times 30 \text{mm}$ & $\& 1 \times 20 \text{mm}$    | αβγ                          | High<br>0.64 | Low<br>'.0.47          | Average<br>0.56      |
|        | $\begin{array}{c} 2 \times 30 \text{mm} \\ \alpha \beta \gamma \end{array}$ | High<br>1.06       | Low<br>0.71                            | Average<br>0.89                  |   | $1 \times 30 \text{mm}$ | Concrete<br>+2 × 30mm                                    | $\alpha \beta r_{\tilde{i}}$ | High<br>0.75 | _ow<br>0.57            | Werage<br>0.66       |
|        | n 1×20mm<br>+1×30mm<br>$\alpha \beta \gamma$                                | High<br>1.52       | Low<br>0.94                            | Average<br>1.23<br>ζ. <i>β</i> ? |   | 1 × 30mm<br>Concrete    | +1 × 20mm<br>&1 × 30mm                                   | αβγ                          | High<br>0.94 | .ow                    | Average<br>0.78      |
|        | $\int_{r}^{r} \frac{2 \times 20 m_{i}}{\alpha \beta \gamma}$                | High<br>2.14       | Low <sub>5</sub><br>1.57               | e Average<br>1.86<br>%           |   | 1 × 30mm                | Concrete<br>2 × 20mm                                     | αέγ                          | ligh<br>1.20 | ow 1<br>0.76           | verage<br>0.98       |
|        | crete $30m$ $\alpha \beta$                                                  | h High<br>30 2.24  | / Low<br>54 1.75                       | rage Averag<br>92 1.99<br>32     |   | × 30mm                  | Concrete                                                 | α μ γ                        | lgh<br>1.48  | 0.92 L                 | crage A              |
|        | 30mm Con<br>Concrete 30                                                     | High Hig<br>3.20 3 | Low Low<br>2.61 · 2                    | Average Ave<br>2.9i 2.           |   | $1 \times 30 \text{mm}$ | Concrete (                                               | αβγ                          | ligh<br>1.52 | .0w<br>0.99            | werage Av<br>1.26    |
|        | Co 60<br>radiation<br>energy                                                | High<br>113        | Low<br>105~106                         | Average<br>109                   |   | Co 60                   | radiation<br>energy                                      |                              | High<br>113  | Low<br>105~106         | Average<br>109       |
|        | Background<br>Value                                                         | 0.15               | ر<br>0.16                              |                                  |   | Background              | Value                                                    |                              |              | دا.0<br>ک<br>1.0       |                      |
|        | Shielding<br>Material<br>Test<br>Instrument                                 | USA                | 3100<br>(Check $\alpha \beta \gamma$ ) |                                  |   | Shielding<br>Material   | Test<br>Instrument                                       |                              | NSA          | 3100<br>(Check α β γ ) |                      |

\_

5

#### COMPARATIVE TEST RESULTS KF- $\alpha\beta\gamma$



Fig. 1 The dependence of suppressing radiation from the different types of KF- $\alpha\beta\gamma$  and thickness' of the shielding layers. Calibrated emitter of  $\gamma$ -ray radiation is parent nuclide Co-56 (E<sub>y</sub> = 1.360175 MeV).

Legend:

No1- coating of 3cm by KF- $\alpha\beta\gamma$  layer with powder.

No2 - coating of 3cm by KF- $lphaeta\gamma$  layer with cones heavy filler.

No3 - coating of 3cm by  $KF-\alpha\beta\gamma$  layer with cylinders' heavy filler;

No4 - lead slab 3cm;

```
No5 - concrete slab 3cm.
```

By sanitary requirements of radioactive protection, the required doze level is 0.293  $(\mu \text{Sv}/\text{h})\,.$  Therefore:

- 1. Theoretically, we have to have a material with 1cm thickness and superficial density  $\rho_{\text{A}}$  = 67 gr/cm<sup>2</sup> (lead has  $\rho_{\text{A}}$ =29.01gr/cm<sup>2</sup>), which could provide suppressing radiation Sm =0.008 (MeVcm<sup>2</sup>/gr) and ionizing radiation H=0.2(µSv/hour).
- 2. Practically, this is 5 cm of lead slabs. Therefore, we can to reduce radiation at least 2.5 times by 2 cm of  $KF\alpha\beta\gamma$  shielding layer.

Concrete KALMATRON® KF αβγ LAYERS [mm] LEAD H\* SLAB slab COATED ON 30[mm] CONCRETE SLABS U μ Sv/hr U 1 U U U U U U 11 30mm 10 20 25 30 45 30 mm 15 55 65 3.1 3.0 2.9 2.8 2.7 45% 2.6 2.5 2.4 2.3 56% 2.2 60% 2.1 65% 2.0 66% 75% 1.9 1.8 1.695 71% 1.6 1.5 1.4 74% 1.355 1.255 88% 1.20 1.10

#### ATTENUATION OF RADIATON BY KALMATRON® KF-αβγ COATED ON A CONCRETE COMPARISION WITH CONCRETE AND LEAD

The equivalents of absorbed dose of Y- radiation by lead and concrete slabs comprised with shielding of 30mm concrete by KF- $\alpha\beta\gamma$  with gradual thickness. H\* - readings from the surface of specified layer.

Test Instrument "DM 3100" (USA); Dose on air 0.16  $\mu$  Sv/hr. Emitter: Co-60 ( $\gamma$ -ray emitter, Z = 27, T<sub>1/2</sub> = 5.3 years, E<sub> $\gamma$ </sub> =1.17MeV  $\div$  1.33 MeV). Legend: Average of the levels of absorbed dose of radiation

36%

33% Comp

1.00

0.9 0.81 0.8 0.72 0.7 0.6

Comparative percentage with previous layer' attenuation.

July, 98